Turunan Diferensial Fungsi Aljabar Matematika
Artikel ini menjelaskan cara menentukan turunan pertama dari fungsi aljabar secara cepat dan mudah dipahami. Simbol atau notasi turunan (diferensial) fungsi dapat ditulis sebagai berikut:
Fungsi aljabar awal = f(x)
Turunan pertama = f'(x)
Turunan kedua = f''(x)
Turunan .... selanjutnya.
Berikut ini disajikan contoh-contoh agar mudah memahami rumus-rumus turunan fungsi aljabar beserta turunan pertama dari fungsi untuk satu suku:
1. Jika f(x) = a, maka f'(x) = 0.
Tentukan turunan pertama dari fungsi-fungsi berikut yang terdiri dari satu suku:
a. f(x) = 12, maka f'(x) = 0,
b. f(x) = -8, maka f'(x) = 0,
c. f(x) = 95, maka f'(x) = 0,
d. f(x) = -100, maka f'(x) = 0.
(Turunan pertama dari bilangan konstan atau tanpa x atau tidak memiliki x adalah 0 atau nol. Misalnya a) f(x) = 12 = 12x^0 memiliki x dengan pangkat 0)
2. Jika f(x) = ax , maka f'(x) = a.
Tentukan turunan pertama dari fungsi-fungsi berikut yang terdiri dari satu suku:
a. f(x) = 12x, maka f'(x) = 12,
b. f(x) = -8x, maka f'(x) = -8,
c. f(x) = 95x, maka f'(x) = 95,
d. f(x) = -100x, maka f'(x) = -100.
(Turunan pertama dari fungsi x berderajat 1 atau x berpangkat 1 atau memiliki x adalah angka atau bilangan yang melekat pada x atau sering disebut koefisien. Misalnya a) f(x) = 12x = 12x^1 memiliki x dengan pangkat 1)
3. Jika f(x) = ax^n , maka f'(x) = a.n.x^(n-1)
Tentukan turunan pertama dari fungsi-fungsi berikut yang terdiri dari satu suku:
a. f(x) = 12x^3, maka f'(x) = 12.3.x^(3-1)
= 36x^2
b. f(x) = -8x^5, maka f'(x) = -8.5.x^(5-1)
= -40x^4
c. f(x) = 95x^2, maka f'(x) = 95.2.x^(2-1)
= 190x^1 = 190x
d. f(x) = -100x^7, maka f'(x) = -100.7.x^(7-1)
= -700x^6
(Turunan pertama dari fungsi x berderajat n atau x berpangkat n adalah angka atau bilangan yang melekat pada x atau sering disebut koefisien dikali pangkat dan pangkat dikurangi 1.
Selanjutnya fungsi yang terdiri dari dua suku atau lebih merupakan gabungan dari ketiga contoh di atas namun dikerjakan dalam satu soal:
4. Tentukan turunan pertama dari fungsi-fungsi f(x) = y=12x-8 adalah .....
Penyelesaian:
f'(x) = y' = 12+0 = 12
5. Tentukan turunan pertama dari fungsi-fungsi f(x) = y=8x^3+10 adalah .....
Penyelesaian:
f'(x) = y' = 8.3x^(3-1) +0 = 24x^2
6. Tentukan turunan pertama dari fungsi-fungsi f(x) = y=7x^4+10x adalah .....
Penyelesaian:
f'(x) = y' = 7.4x^(4-1)+10 = 28x^3 +10
7. Tentukan turunan pertama dari fungsi-fungsi f(x) = y=x^2-3x+10 adalah .....
Penyelesaian:
f'(x) = y' = 1.2x^(2-1) -3+0 = 2x-3
8. Tentukan turunan pertama dari fungsi-fungsi f(x) = y=x^5+3x^4-6x^3+4x^2+10 adalah .....
Penyelesaian:
f'(x) = y' = 1.5x^(5-1) +3.4x^(4-1) -6.3x^(3-1) +4.2x^(2-1) +0
y'=5x^4 +12x^3 -18x^2 +8x
Demikian semoga bermanfaat.
^ artinya pangkat (......)
Fungsi aljabar awal = f(x)
Turunan pertama = f'(x)
Turunan kedua = f''(x)
Turunan .... selanjutnya.
Berikut ini disajikan contoh-contoh agar mudah memahami rumus-rumus turunan fungsi aljabar beserta turunan pertama dari fungsi untuk satu suku:
1. Jika f(x) = a, maka f'(x) = 0.
Tentukan turunan pertama dari fungsi-fungsi berikut yang terdiri dari satu suku:
a. f(x) = 12, maka f'(x) = 0,
b. f(x) = -8, maka f'(x) = 0,
c. f(x) = 95, maka f'(x) = 0,
d. f(x) = -100, maka f'(x) = 0.
(Turunan pertama dari bilangan konstan atau tanpa x atau tidak memiliki x adalah 0 atau nol. Misalnya a) f(x) = 12 = 12x^0 memiliki x dengan pangkat 0)
2. Jika f(x) = ax , maka f'(x) = a.
Tentukan turunan pertama dari fungsi-fungsi berikut yang terdiri dari satu suku:
a. f(x) = 12x, maka f'(x) = 12,
b. f(x) = -8x, maka f'(x) = -8,
c. f(x) = 95x, maka f'(x) = 95,
d. f(x) = -100x, maka f'(x) = -100.
(Turunan pertama dari fungsi x berderajat 1 atau x berpangkat 1 atau memiliki x adalah angka atau bilangan yang melekat pada x atau sering disebut koefisien. Misalnya a) f(x) = 12x = 12x^1 memiliki x dengan pangkat 1)
3. Jika f(x) = ax^n , maka f'(x) = a.n.x^(n-1)
Tentukan turunan pertama dari fungsi-fungsi berikut yang terdiri dari satu suku:
a. f(x) = 12x^3, maka f'(x) = 12.3.x^(3-1)
= 36x^2
b. f(x) = -8x^5, maka f'(x) = -8.5.x^(5-1)
= -40x^4
c. f(x) = 95x^2, maka f'(x) = 95.2.x^(2-1)
= 190x^1 = 190x
d. f(x) = -100x^7, maka f'(x) = -100.7.x^(7-1)
= -700x^6
(Turunan pertama dari fungsi x berderajat n atau x berpangkat n adalah angka atau bilangan yang melekat pada x atau sering disebut koefisien dikali pangkat dan pangkat dikurangi 1.
Selanjutnya fungsi yang terdiri dari dua suku atau lebih merupakan gabungan dari ketiga contoh di atas namun dikerjakan dalam satu soal:
4. Tentukan turunan pertama dari fungsi-fungsi f(x) = y=12x-8 adalah .....
Penyelesaian:
f'(x) = y' = 12+0 = 12
5. Tentukan turunan pertama dari fungsi-fungsi f(x) = y=8x^3+10 adalah .....
Penyelesaian:
f'(x) = y' = 8.3x^(3-1) +0 = 24x^2
6. Tentukan turunan pertama dari fungsi-fungsi f(x) = y=7x^4+10x adalah .....
Penyelesaian:
f'(x) = y' = 7.4x^(4-1)+10 = 28x^3 +10
7. Tentukan turunan pertama dari fungsi-fungsi f(x) = y=x^2-3x+10 adalah .....
Penyelesaian:
f'(x) = y' = 1.2x^(2-1) -3+0 = 2x-3
8. Tentukan turunan pertama dari fungsi-fungsi f(x) = y=x^5+3x^4-6x^3+4x^2+10 adalah .....
Penyelesaian:
f'(x) = y' = 1.5x^(5-1) +3.4x^(4-1) -6.3x^(3-1) +4.2x^(2-1) +0
y'=5x^4 +12x^3 -18x^2 +8x
Demikian semoga bermanfaat.
^ artinya pangkat (......)
Comments
Post a Comment